

Under System (AVCP)

Certificate of Conformity 1404-CPD-1977 issued by

Declaration of Performance FM 753 Nautilus hrg

Throughbolt anchor made of galvanised steel high corrosion resistance

Intended use or uses of the construction product according to ETAG 001 p.1 and 2							
Generic type	torque controlled expansion anchor throughbolt type						
Base material	un-cracked concrete C20/25 to C50/60 acc. to EN 206-1						
Material	steel galvanised acc. to EN ISO 4042 (cl. 5.8 min. for bolt acc.to EN ISO 898-1)						
Durability	internal dry conditions						
Loading	static and quasi-static						
Fire Resistance	NPD						
Fire Reaction	A1 according to EN 13501-1						
ETA-13/0367 issued by	ZAG approval body nr.1404						
On the basis of	ETAG001 p.1-2						

ZAG notify body nr.1404

	d performances according to ETA-13/03 nethod ETAG 001 Annex C	67 (ETA	G 001	l p.1 a	ind 2)								
ESSENTIA	AL CHARACTERISTICS		PERFORMANCE										
Installatio	N	16	M8		M10		M12		M16		M20		
d ₀	Nominal diameter of drill bit	[mm]	6		8		10		12		16		20
h _{nom}	Minimum installation depth	[mm]	36	41	38	48	44	59	56	71	76	96	115
h _{ef}	Effective anchorage depth	[mm]	30 ²⁾	35 ²⁾	30 ²⁾	40	35 ²⁾	50	45	60	65	85	95
h _{min}	Minimum thickness of the concrete member	[mm]	10	00	10	00	10	00	100	120	130	170	200
T _{inst}	Nominal torque moment	[Nm]	(6	1	.5	2	5	5	0	10	00	150
S _{min}	Minimum spacing	[mm]	45	50	45	55	50	55	120	90	140	130	200
C _{min}	Minimum edge distance	[mm]	45	50	45	55	50	55	80	90	100	130	145
	teel failure		L										
N _{Rk,s}	Tension Steel characteristic failure	[kN]	1	.1	1	.7	2	8	3	3	7	'2	108
γ _{m,sN} 1)	Partial safety factor for tension steel failure	[-]	1	,5	1	,4	1	,4	1	,4	1	,5	1,5
	ailure C20/25		N	16	N	18	М	10	М	12	М	16	M20
N _{Rk,p,ucr}	Tension characteristic load in un-cracked concrete	[kN]	5 ²⁾	6 ²⁾	6 ²⁾	12	6 ²⁾	12	12	23 ³⁾	26 ³⁾	35	40
γ ₂	Partial safety factor	[-]		l .		<u>I</u>	I.	1,0			<u>I</u>	l .	
γ _{m,c} 1)	Partial safety factor	[-]						1,5					
S _{cr,N}	Critical spacing	[mm]	90	105	90	120	105	150	135	180	195	255	290
C _{cr,N}	Critical edge distance	[mm]	45	53	45	60	53	75	68	90	98	130	145
Ψ _c C30/37	Increasing factor for concrete C30/37	[-]		1,	07		1,10				ı		1,22
Ψ _c C40/50	Increasing factor for concrete C40/50	[-]		1,	14				1,	20			1,41
Ψ _c C50/60	Increasing factor for concrete C50/60	[-]		1,	20				1,	30			1,55
Splitting f	ailure												
S _{cr,sp}	Critical spacing (splitting)	[mm]	90	105	90	120	105	150	135	180	195	255	290
C _{cr,sp}	Critical edge distance(splitting)	[mm]	45	53	45	60	53	75	68	90	98	130	145
γ _{m.c} 1)	Partial safety factor	[-]						1,5					-
	nent on Tension Load												
N _{ucr}	Service tension load in un-cracked concrete	[kN]	2,4	2,9	2,9	5,7	2,9	5,7	5,7	11,2	12,6	16,7	19,0
$\delta_{\text{N0,ucr}}$	Short term displacement under tension load	[mm]	0,2	0,3	0,1	1,6	0,1	0,4	0,1	0,1	0,1	0,1	0,1
δ _{N∞.ucr}	Long term displacement under tension load	[mm]						1,6					
Shear Ste	el failure		N	16	N	18	М	10	М	12	М	16	M20
V _{Rk.s}	Shear Steel characteristic failure	[kN]	6	,5	9	,2	13	3,9	20),1	42	2,6	51,5
M ⁰ _{Rk,s}	Bending Moment characteristic failure	[Nm]	1	2	2	24	4	9	7	2	19	93	338
γ _{m,sV} ¹⁾	Partial safety factor for shear steel failure	[-]						1,5					1
	ncrete Pry-out or Edge failure												
k	[-]			1	,0					2	,0		
l _{ef}	Factor equation (5.6) of ETAG, Annex C, § 5.2.3.3 Effective anchorage length	[mm]	30	35	30	40	35	50	45	60	65	85	90
d _{nom}	Nominal diameter of anchor	[mm]	(6	:	8	10		12		1	.6	
γ _m ¹⁾	[-]			•		•	1,5	•				•	
	Partial safety factor ($\gamma_{m,c=}\gamma_{m,pr}$) nent on Shear Load												
v .	Service shear load in concrete	[kN]	3	,1	4	,4	6	,6	9	,6	20),3	24,5
δ_{V0}	Short term displacement under shear load	[mm]	2	,1		,0		,6	2,8			,0	2,6
δ _{v∞}	Long term displacement under shear load	[mm]	3	,1	3	,1	3,9		4,2		4	,4	4,0

1) In absence of other national regulations; 2) Use restricted to anchoring of structural components statically indeterminated; 3) Pull-out failure not decisive.

According to CPR 305/2011/EU pg.1/2 We inform you that Friulsider is classified in the EC 1907/2006 Reach Directive as a Downstream-user of substances. The product supplied does not contain substances classified as SVHC according to the Candidate List in a concentration equal or greater than 0.1% (weight / weight). Article 31 is not applicable to the present product.

The above performances apply for the following article numbers (galvanised 10µm Nautilus grey opaque):

d 4)	L ⁵⁾ [mm]	t _{fix,RED} ⁶⁾ [mm]	t _{fix,STD} 7) [mm]	Marking	ID	Cod.
	45	3	-	FM-R 6/3	А	75320c06045
N4C	65	(20)	15	FM-L 6/15	В	75320c06065
M6	85	(40)	35	FM-L 6/35	С	75320c06085
-	100	(55)	50	FM-L 6/50	D	75320c06100
	50	5	-	FM-R 8/5	Α	75320c08050
-	65	(15)	7	FM-L 8/7	В	75320c08065
	75	(25)	15	FM-L 8/15	С	75320c08075
M8	90	(40)	30	FM-L 8/30	D	75320c08090
-	115	(65)	55	FM-L 8/55	Е	75320c08115
-	135	(85)	75	FM-L 8/75	F	75320c08135
-	165	(115)	105	FM-L 8/105	G	75320c08165
	60	5	-	FM-R 10/5	Α	75320c10060
-	75	(20)	5	FM-L 10/5	В	75320c10075
-	90	(35)	20	FM-L 10/20	С	75320c10090
N440	100	(45)	30	FM-L 10/30	-	75320c10100
M10	120	(65)	50	FM-L 10/50	D	75320c10120
	145	(90)	75	FM-L 10/75	E	75320c10145
	170	(115)	100	FM-L 10/100	F	75320c10170
-	210	(155)	140	FM-L 10/140	G	75320c10210
	80	7	-	FM-R 12/7	Α	75320c12080
	100	(25)	10	FM-L 12/10	В	75320c12100
	110	(35)	20	FM-L 12/20	С	75320c12110
	135	(60)	45	FM-L 12/45	D	75320c12135
	160	(85)	70	FM-L 12/70	E	75320c12160
	185	(115)	100	FM-L 12/100	F	75320c12185
	200	(130)	115	FM-L 12/115	G	75320c12200
M12	220	(150)	135	FM-L 12/135	Н	75320c12220
	240	(170)	155	FM-L 12/155	_	75320c12240
	255	(185)	170	FM-L 12/170	L	75320c12255
	285	(215)	200	FM-L 12/200	М	75320c12285
	300	(230)	215	FM-L 12/215	N	75320c12300
	325	(255)	240	FM-L 12/240	Р	75320c12325
	355	(285)	270	FM-L 12/270	Q	75320c12355
	110	15	-	FM-R 16/15	Р	75320c16110
	125	(30)	10	FM-S 16/10	Α	75320c16125
	145	(50)	30	FM-S 16/30	В	75320c16145
-	175	(80)	60	FM-S 16/60	С	75320c16175
	215	(120)	100	FM-S 16/100	D	75320c16215
M16	230	(135)	115	FM-S 16/115	E	75320c16230
=	250	(155)	135	FM-S 16/135	F	75320c16250
ļ	270	(175)	155	FM-S 16/155	G	75320c16270
ļ	285	(190)	170	FM-S 16/170	Н	75320c16285
ļ	320	(225)	205	FM-S 16/205	Ī	75320c16320
	170	-	30	FM-S 20/30	A	75320c20170
	215	-	75	FM-S 20/75	В	75320c20215
M20	260	-	120	FM-S 20/120	С	75320c20260
-	280	-	140	FM-S 20/140	D	75320c20280

⁴⁾ Nominal diameter of thread; ⁵⁾ Length of anchor; ⁶⁾ Thickness fixture max for reduced embedment; ⁷⁾ Thickness fixture max for standard embedment.

The performances of the product identified by the above identification code are in conformity with the declared performance. This declaration of performance is issued under the sole responsibility of **Friulsider SpA**. Signed for and behalf of the manufacturer by:

Name and functions	Place and date of issue	Signature
Eng.Vittorio Pilla General Director	San Giovanni al Natisone, 09-10-2013	At An

According to CPR 305/2011/EU pg.2/2

Zavod za gradbeništvo Slovenije

Slovenian National Building and Civil Engineering Institute Dimičeva 12, 1000 Ljubljana, Slovenija

Tel.: +386 (0)1-280 44 72 Fax: +386 (0)1-436 74 49 e-mail: **info.ta@zag.si** http://www.zag.si

European Technical Approval

ETA-13/0367

[English translation prepared by ZAG – Original version in Slovenian language]

Komercialno ime Trade name

Imetnik soglasja Holder of approval

Tip gradbenega proizvoda in njegova predvidena uporaba

Generic type and use of construction product

Veljavnost od Validity from do to

Proizvodni obrat Manufacturing plant FM753 Nautilus hrg

FRIULSIDER S.p.A. via Trieste 1 33048 San Giovanni al Natisone (UD) Italy

Torzijsko kontrolirano zatezno kovinsko sidro iz pocinkanega jekla velikosti M6, M8, M10, M12, M16 in M20 za vgradnjo v nerazpokani beton

Torque controlled expansion anchor made of galvanised steel of sizes M6, M8, M10, M12, M16 and M20 for use in non-cracked concrete

24.05.2013

23.05.2018

FRIULSIDER S.p.A. via Trieste 1 33048 San Giovanni al Natisone (UD) Italy

To Evropsko tehnično soglasje vsebuje

This European Technical Approval contains

13 strani vključno s 6 prilogami, ki so sestavni del tega soglasja

13 pages including 6 annexes, which form an integral part of the document

I LEGAL BASES AND GENERAL CONDITIONS

- 1. This European Technical Approval is issued by the Slovenian National Building and Civil Engineering Institute (ZAG) in accordance with:
 - Council Directive 89/106/EEC of 21 December 1988 on the approximation of laws, regulations and administrative provisions of Member States relating to construction products¹, modified by the Council Directive 93/68/EEC² and Regulation (EC) N°1882/2003 of the European Parliament and of the Council³,
 - Zakon o gradbenih proizvodih (ZGPro)⁴,
 - Common Procedural Rules for Requesting, Preparing and the Granting of European Technical Approvals set out in the Annex of Commission Decision 94/23/EC⁵,
 - Guideline for European Technical Approval of "Metal Anchors for use in Concrete", Part 1 "Anchors in General" and Part 2: Torque controlled expansion anchors", ETAG 001, edition October 1997, amended November 2006.
- 2. The Slovenian National Building and Civil Engineering Institute (ZAG) is authorised to check whether the provisions of this European Technical Approval are met. Checking may take place in the manufacturing plant. Nevertheless, the responsibility for the conformity of the products with the European Technical Approval and for their fitness for the intended use remains with the holder of the European Technical Approval.
- 3. This European Technical Approval is not to be transferred to manufacturers or agents of manufacturer other than those indicated on page 1; or manufacturing plants other than those indicated on page 1 of this European Technical Approval.
- 4. This European Technical Approval may be withdrawn by the Slovenian National Building and Civil Engineering Institute (ZAG), in particular pursuant to information by the Commission according to Article 5 (1) of the Council Directive 89/106/EEC.
- 5. Reproduction of this European Technical Approval including transmission by electronic means shall be in full. However, partial reproduction can be made with the written consent of the Slovenian National Building and Civil Engineering Institute (ZAG). In this case partial reproduction has to be designated as such. Texts and drawings of advertising brochures shall not contradict or misuse the European Technical Approval.
- 6. The European Technical Approval is issued by the approval body in its official language. This version corresponds fully to the version circulated within EOTA. Translations into other languages have to be designated as such.

Official Journal of the European Communities N° L 40, 11.2.1989, p.12

² Official Journal of the European Communities N° L 220, 30.8.1993, p.1

Official Journal of the European Union N° L 284, 31.10.2003, p.1

Offical Gazette of the Republic of Slovenia, N° 52/00 and N° 110/02

⁵ Official Journal of the European Communities N° L 17, 20.1.1994, p.34

II SPECIFIC CONDITIONS OF THE EUROPEAN TECHNICAL APPROVAL

1 Definition of product and intended use

1.1 Definition of product

The FM753 Nautilus hrg in the range of M6, M8, M10, M12, M16 and M20 is an anchor made of galvanised steel, which is placed into a drilled hole and anchored by torque-controlled expansion.

For the installed anchor see Figure given in Annex 1.

1.2 Intended use

The anchor is intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Essential Requirements 1 and 4 of Council Directive 89/106/EEC shall be full filled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences. The anchor is to be used only for anchorages subjected to static and quasi-static loading in reinforced or non reinforced normal weight concrete of strength classes from C20/25 to C50/60 according to EN 206-1:2003. It may be anchored in non-cracked concrete only.

The anchor may only be used in concrete subject to dry internal conditions.

The provisions made in this European Technical Approval are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the manufacturer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

2 Characteristics of product and methods of verification

2.1 Characteristics of product

The anchor corresponds to the drawings and provisions given in Annexes 1. The characteristic material values, dimensions and tolerances of the anchor not indicated in these Annexes 2 to 4 shall correspond to the respective values laid down in the technical documentation⁶ of this European Technical Approval. The characteristic anchor values for the design of anchorage are given in Annexes 5 and 6.

Each anchor is marked with the identification name of producer, trade name of an anchor, identification letter of the length of a thread, nominal diameter of the anchor and maximum thickness of the fixture.

As an example: FM L 10/20

The anchor shall only be packaged and supplied as a complete unit.

The technical documentation of this European Technical Approval is deposited at the Slovenian National Building and Civil Engineering Institute (ZAG) and, as far as relevant for the tasks of the approved bodies involved in the attestation of conformity procedure, is handed over the approved bodies.

2.2 Methods of verification

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance, stability and safety in use in the sense of the Essential Requirement 1 and 4 has been made in accordance with the "Guideline for European Technical Approval of Metal Anchors for use in Concrete", Part 1 "Anchors in general" and Part 2 "Torque-controlled expansion anchors", on the basis of Option 7.

3 Evaluation and attestation of conformity and CE marking

3.1 System of attestation of conformity

According to the decision 96/582/EC the European Commission⁷ the system 1 of attestation of conformity applies.

This system of attestation of conformity is defined as follows:

System 1: Certification of the conformity of the product by an approved certification body on the basis of:

- a) tasks for the manufacturer:
 - (1) factory production control;
 - (2) further testing of samples taken at the factory by the manufacturer in accordance with a control plan.
- b) tasks for the approved body:
 - (3) initial type-testing of the product;
 - (4) initial inspection of factory and of factory production control;
 - (5) continuous surveillance, assessment and approval of factory production control.

3.2 Responsibilities

3.2.1 Tasks of the manufacturer

3.2.1.1 Factory production control

The manufacturer shall exercise permanent internal control of production of concerned product. All the elements, requirements and provisions adopted by the manufacturer are documented in a systematic manner in the form of written policies and procedures, including records of results performed. This production control system ensures that the product is in conformity with the European technical approval.

The manufacturer may only use raw materials stated in the technical documentation of this European technical approval. The incoming raw materials shall be subject to controls and tests by the manufacturer before acceptance. Check of incoming materials shall include control of the inspection documents presented by the manufacturer of the raw materials (comparison with nominal values) by verifying dimensions and determining the material properties, e.g. tensile strength, hardness, surface finish

The manufactured components of the anchor shall be subjected to the following tests:

- Dimensions of the component parts:
 bolt (diameters, lengths, thread, geometry of the cone, marking);
 sleeve (length, thickness, catch size);
 hexagonal nut (thread, wrench, height);
 washer (diameter, thickness).
- Material properties:
 bolt (yielding and ultimate tensile strength);
 sleeve (ultimate tensile strength or hardness);

Official Journal of the European Communities L 198/31 of 25.7.1997

hexagonal nut (proof load); washer (hardness).

Visual control of correct assembly and of completeness of the anchor.

The factory production control shall be in accordance with the "Control Plan" relating to the European technical approval ETA–13/0367 issued on 24.05.2013, which is part of the technical documentation of this European technical approval. The "Control Plan" is laid down in the context of the factory production control system operated by the manufacturer and deposited at the Slovenian National Building and Civil Engineering Institute (ZAG).

The results of factory production control shall be recorded and evaluated in accordance with the provisions of the "Control Plan".

3.2.1.2 Other tasks of the manufacturer

The manufacturer shall, on the basis of a contract, involve a body which is approved for the tasks referred to in a section 3.1 in the field of torque-controlled expansion anchors in order to undertake the actions laid down in section 3.3. For this purpose the "Control Plan" referred to in sections 3.2.1.1 and 3.2.2 shall be handed over by the manufacturer to the approved body or bodies involved.

The manufacturer shall make a declaration of conformity, stating that the construction product is in conformity with the provisions of the European technical approval ETA–13/0367 issued on 24.05.2013.

3.2.2 Tasks of notified bodies

The notified body shall perform the:

- initial type testing of the product,
- initial inspection of factory and of factory production control,
- continuous surveillance, assessment and approval of factory production control.

in accordance with the provisions laid down in the "Control plan", which is the part of technical documentation of this European technical approval.

The notified body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in a written report.

The notified certification body involved by the manufacturer shall issue an EC certificate of conformity control stating the conformity with the provisions of this European technical approval.

In cases where the provisions of the European technical approval and its "Control Plan" are no longer full filled the certification body shall withdraw the certificate of conformity and inform the Slovenian National Building and Civil Engineering Institute (ZAG) without delay.

3.3 CE-Marking

The CE marking shall be affixed on each packaging of anchors. The symbol "CE" shall be followed by the identification number of the certification body, and be accompanied by the following additional information:

- identification number of the certification body;
- name and identifying mark of the producer and manufacturing plant;
- the last two digits of the year in which CE marking was affixed;
- number of the EC certificate of conformity;
- number of the European Technical Approval;
- use category ETAG 001 2 (Option 7);
- size of the anchor.

4 Assumptions under which the fitness of the product for the intended use was favourably assessed

4.1 Manufacturing

The European technical approval is issued for the product on the basis of agreed data/information, deposited with the Slovenian National Building and Civil Engineering Institute (ZAG), which identifies the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to the Slovenian National Building and Civil Engineering Institute (ZAG) before the changes are introduced. The Slovenian National Building and Civil Engineering Institute (ZAG) will decide whether or not such changes affect the ETA and consequently the validity of the CE marking on the basis of the ETA and if so whether further assessment or alternations to the ETA, shall be necessary.

4.2 Installation

4.2.1 Design of anchorages

The fitness of the anchors for the intended use is given under the following conditions:

The anchorages are designed in accordance with the "Guideline for European Technical Approval of Metal Anchors for use in Concrete", Annex C, Method A for torque controlled expansion anchors under the responsibility of an engineer experienced in anchorages and concrete work.

Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.

The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to support, etc.).

4.2.2 Installation of anchors

The fitness for use of the anchor can only be assumed if the following conditions are met:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on the site.
- Use of the anchor only as supplied by the manufacturer without exchanging the components of an anchor.
- Anchor installation in accordance with the manufacturer's specifications and drawings using the appropriate tools.
- Thickness of the fixture corresponding to the range of required thickness values for the type of anchor.
- Checks before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the rang given and is not lower that of the concrete to which the characteristic loads apply for.
- Check of concrete being well compacted, e.g. without significant voids.
- Cleaning of the hole of drilling dust.
- Anchor installation ensuring the specified embedment depth.
- Keeping of the edge distance and spacing to the specified values without minus tolerances.
- Positioning of the drill holes without damaging the reinforcement.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not to the anchor in the direction of load application.
- Application of the torque moment given in Annex 4 using a calibrated torque wrench.

4.2.3 Responsibility for the manufacturer

It is in the responsibility of the manufacturer to ensure that the information on the specific conditions according to 1 and 2 including Annexes referred to 4.2.1, 4.2.2 is given to those who are concerned. This information may be made by reproduction of the respective parts of the European Technical Approval. In addition, all installation data shall be shown clearly on the packaging and/or on an enclosed instruction sheet, preferably using illustration.

The minimum data required are:

- drill bit diameter;
- thread diameter;
- maximum thickness of the fixture;
- minimum installation depth;
- torque moment;
- information on the installation procedure, including cleaning of the hole, preferably by means of an illustration;
- reference to any special installation equipment needed;
- identification of the manufacturing batch.

All data shall be presented in a clear and explicit form.

Leading expert: Service for Technical Approvals:

Dušica Drobnič, M.Sc., (Civ.Eng.) Franc Capuder, M.Sc., (Civ.Eng.)

Assembled anchor and schema of the anchor in use: 1 "FM" = identification name of producer and trade name of anchor Marking: "R" = identification letter short length of anchor only for reduced embedment depth 1. Anchor bolt (body) or "L" = long thread 2. Washer or "S" = short thread 3. Nut " d_{nom} " = nominal diameter of anchor 4. Expansion sleeve "tfix" = max thickness of fixture FM L 10/20 (anchor size M10x90 - t_{fix} = 20 mm) e.g.:

Figure 1: FM753 Nautilus hrg anchor

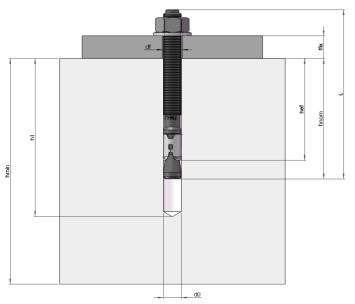


Figure 2: Installed FM753 Nautilus hrg anchor

Figure 2: Installed FM753 Nau	tilds fing allerior
FM753 Nautilus hrg	Annex 1
Product and intended use	of the European Technical Approval ETA-13/0367

Table 1: Dimensions

d	dxL	Marking	ID	L	d _{nom}	f
		_		[mm]	[mm]	[mm]
	M6x45	FM-R 6/3	A	47		20
9W	M6x65	FM-L 6/15	В	65	6	40
_	M6x85	FM-L 6/35	C	85		60
	M6x100	FM-L 6/50	D	100		60
	M8x50	FM-R 8/5	A	53		22
	M8x65	FM-L 8/7	В	65		37
∞ .	M8x75	FM-L 8/15	С	75		47
M8	M8x90	FM-L 8/30	<u>D</u>	90	8	62
	M8x115	FM-L 8/55 FM-L 8/75	<u>Е</u> F	115 135		82
-	M8x135	FM-L 8/105	G F	165		87 87
	M8x165	FM-R 10/5	A	63		28
-	M10x60 M10x75	FM-R 10/5 FM-L 10/5	<u> </u>	78		43
-	M10x75	FM-L 10/5 FM-L 10/20	<u>Б</u>	90		55
0	M10x100	FM-L 10/30	<u> </u>	100		65
M10	M10x120	FM-L 10/50	D	120	10	85
_	M10x145	FM-L 10/75	E	145		85
-	M10x143	FM-L 10/100	<u>_</u>	173		85
•	M10x170	FM-L 10/140	G	210		85
	M12x80	FM-R 12/7	A	80		40
•	M12x100	FM-L 12/10	В	100		58
•	M12x110	FM-L 12/20	C	110		68
•	M12x135	FM-L 12/45	D	135		93
•	M12x160	FM-L 12/70	E	160		93
•	M12x185	FM-L 12/100	F	188		93
7	M12x200	FM-L 12/115	G	200	1	93
M12	M12x220	FM-L 12/135	Н	220	12	93
	M12x240	FM-L 12/155	1	240		93
•	M12x255	FM-L 12/170	L	255		93
	M12x285	FM-L 12/200	M	285		93
	M12x300	FM-L 12/215	N	300		93
	M12x325	FM-L 12/240	Р	325		93
	M12x355	FM-L 12/270	Q	355		93
	M16x110	FM-R 16/15	Р	110		53
	M16x125	FM-S 16/10	Α	125		68
	M16x145	FM-S 16/30	В	145		88
	M16x175	FM-S 16/60	C	175		88
M16	M16x215	FM-S 16/100	D	215	16	88
Σ	M16x230	FM-S 16/115	<u> </u>	230		88
	M16x250	FM-S 16/135	F	250		88
	M16x270	FM-S 16/155	G	270	4	88
	M16x285	FM-S 16/170	H	285	4	88
	M16x320	FM-S 16/205	<u> </u>	320		88
	M20X170	FM-S 20/30	A	170	4	65
M20	M20X215	FM-S 20/75	В	215	20	65
2	M20X260	FM-S 20/120	С	260	4	65
	M20X280	FM-S 20/140	D	280		65

FMI/53 Nautilus hi	'g
--------------------	----

Dimensions

Annex 2

of the European Technical Approval

Table 2: Materials

Part	Component	Coating			
1	Anchor body (bolt)	Cold formed or machined steel according to EN ISO 898/1	Calvaniand > 10m		
2	Washer	Steel according to DIN 125/1 – 140 HV	Galvanised ≥ 10 μm "Nautilus high resistance grey		
3	Hexagonal nut	Steel grade 8 according to DIN 934	opaque"		
4	Expansion sleeve	Stainless steel AISI 316 according to EN 10088/2			

Table 3: Minimum distance

Anchors	ize	М6	M8	M10	M12	M16	M20		
.	Effective anchorage depth	h _{ef,STD}	[mm]	35	40	50	60	85	95
dard dmen pth	Minimum thickness of concrete member	h _{min}	[mm]	100	100	100	120	170	200
Standard embedment depth	Minimum spacing	Smin	[mm]	50	55	55	90	130	200
Φ	Minimum edge distance	Cmin	[mm]	50	55	55	90	130	145
+	Effective anchorage depth	$h_{\text{ef,RED}}$	[mm]	30	30	35	45	65	-
Reduced embedment depth	Minimum thickness of concrete member	h _{min}	[mm]	100	100	100	100	130	-
Reduced mbedmer depth	Minimum spacing	S _{min}	[mm]	45	45	50	120	140	-
Φ	Minimum edge distance	Cmin	[mm]	45	45	50	80	100	-

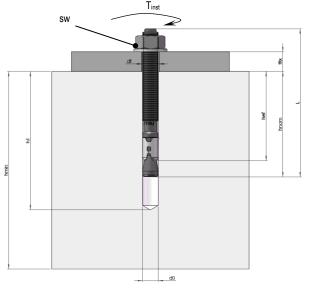


Figure 3: Schema of installed

= length of the anchor [mm]

= thickness of fixture [mm]

= nominal drill hole diameter [mm]

= minimum installation depth [mm]

= effective anchorage depth [mm]

= diameter of clearance hole in the fixture [mm]

= depth of drill hole [mm]

= minimum thickness of the concrete member [mm] h_{min}

 T_{inst} = torque moment [Nm]

= socket wrench

FM753 Nautilus hrg

Materials, Minimum distances and Schema of installed

Annex 3

of the European Technical Approval

d	dxL	t _{fix} h _{ef,RED} [mm]	t _{fix} h _{ef,STD} [mm]	h 1 [mm]	h _{nom} [mm]	h ef [mm]	d₀ [mm]	d _{cut,max} [mm]	d f [mm]	h _{min} [mm]	T _{inst} [Nm]	sw [mm		
	M6x45	3	-	45	36	30								
9	M6x65	(20)	15					0.45	7	400	_	40		
₩ ₩	M6x85	(40)	35	50	41	35	6	6,45	7	100	6	10		
-	M6x100	(55)	50											
	M8x50	5	-	50	38	30								
	M8x65	(15)	7											
	M8x75	(25)	15											
M8	M8x90	(40)	30		40	40	8	8,45	9	100	15	13		
_	M8x115	(65)	55	60	48	40								
	M8x135	(85)	75											
-	M8x165	(115)	105											
	M10x60	5	-	55	55 44	35								
	M10x75	(20)	5											
	M10x90	(35)	20											
0	M10x100	(45)	30						l	100	25	17		
M10	M10x120	(65)	50	70	59	50	10	10,45	12					
	M10x145	(90)	75											
	M10x170	(115)	100								ı			
-	M10x210	(155)	140											
	M12x80	7	-	70	56	45				100				
-	M12x100	(25)	10											
	M12x110	(35)	20											
-	M12x135	(60)	45											
-	M12x160	(85)	70									ı		
	M12x185	(115)	100											50
7	M12x200	(130)	115											
M12	M12x220	(150)	135	85	71	60	12	12,5	14	120	50	19		
-	M12x240	(170)	155											
-	M12x255	(185)	170											
	M12x285	(215)	200											
	M12x300	(230)	215											
	M12x325	(255)	240											
	M12x355	(285)	270											
	M16x110	15	-	95	76	65				130				
-	M16x125	(30)	10											
-	M16x145	(50)	30											
-	M16x175	(80)	60											
9	M16x215	(120)	100											
M16	M16x230	(135)	115	115	96	85	16	16,5	18	170	100	24		
_	M16x250	(155)	135			- 50				., 0				
-	M16x270	(175)	155											
-	M16x285	(190)	170											
-	M16x320	(225)	205											
	M20x170	- (223)	30											
o	M20x170	-	75					20,5	22					
M20	M20x213	-	120	130	115	95	20			200	150	30		
2	IVIZUAZUU	_	120			-								I

FM753 Nautilus hrg	
	Annex 4
Installation data	of the European Technical Approval
	ETA-13/0367

Table 5: Characteristic values of resistance to tension loads of design method A

			M6-1	M6-2	M8-1	M8-2	M10-1	M10-2	M12-1	M12-2	M16-1	M16-2	M20
Steel failure													
Characteristic resistance	$N_{\text{Rk,s}}$	[kN]	1	1	1	17 28		8	33		7	2	108
Partial safety factor	γMs	[-]	1,	,5	1	,4	1	,4	1	,4	1,	,5	1,5

Pull-out failure	е												
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	6	6	12	6	12	12	_* 1)	_* 1)	35	40
Partial safety factor	$\gamma_{\text{Mp}}^{2)}$	[-]		1,5									
Increasing factor for	ψ _c C30/37	[-]		1,	07				1,	10			1,22
Nrk for non-cracked	ψc C40/50	[-]		1,	14		1,20						
concrete	ψc C50/60	[-]		1,	20				1,	30			1,55

¹⁾ Pull – through failure not decisive

²⁾ Including γ_2 = 1,0 (in the absence of other national regulations)

Concrete cone	failure	and s	plitting	g failu	re								
Effective anchorage depth	h_{ef}	[mm]	30*	35*	30*	40	35*	50	45	60	65	85	95
Characteristic spacing	S _{cr,N} = S _{cr,sp}	[mm]						$3 \times h$	ef				
Characteristic edge distance	C _{cr,N} = C _{cr,sp}	[mm]						1,5 ×	Nef				
De d'al cofete feeter	γ2	[-]						1,0					
Partial safety factor	γ _{Mc} = γ _{MSp}	[-]						1,5					

^{*} Use restricted to anchoring of structural components statically indeterminated.

Table 6: Displacement under tension load

			M6-1	M6-2	M8-1	M8-2	M10-1	M10-2	M12-1	M12-2	M16-1	M16-2	M20
Tension Load in non-cracked concrete C20/25		[kN]	2,4	2,9	2,9	5,7	2,9	5,7	5,7	11,2	12,6	16,7	19,0
Dianlessment	δ_{N0}	[mm]	0,21	0,33	0,09	1,6	0,07	0,35	0,10	0,12	0,03	0,03	0,05
Displacement	δ_{N^∞}	[mm]	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6
Tension Load in non-cracked concrete C50/60		[kN]	2,9	3,5	3,5	6,8	3,8	7,4	7,4	14,6	16,4	21,7	29,4
Displacement	δ_{N0}	[mm]	0,03	0,25	0,15	1,24	0,04	1,95	0,04	0,56	0,04	0,11	1,81
Displacement	δ _{N∞}	[mm]	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5

FM753 Nautilus hrg

Design method A: characteristic values of resistance to tension loads and displacements

Annex 5

of the European Technical Approval

Table 7: 0	Characteristic	values of	resistance t	to shear	loads of	design method A

			M6-1	M6-2	M8-1	M8-2	M10-1	M10-2	M12-1	M12-2	M16-1	M16-2	M20
Steel failure wit	hout le	ever a	rm										
Characteristic resistance	V _{Rk,s}	[kN]	6,	,5	9,	2	1	3,9	20),1	42	2,6	51,5
Partial safety factor	γMs	[-]						1,5					

Steel failure with lever arm											
Characteristic resistance	$M_{\text{Rk,s}}$	[Nm]	12	24	49	72	193	338			
Partial safety factor	γMs	[-]			1,5						

Concrete pryout failure										
Factor in equation (5.6) of ETAG Annex C, Paragraph 5.2.3.3	k	[-]	1,0	2,0						
Partial safety factor	γ2	[-]	1,0							
Fartial Salety factor	γмс	[-]	1,5							

Concrete edge t	Concrete edge failure												
Effective length of anchor in shear loading	I _f	[mm]	30	35	30	40	35	50	45	60	65	85	95
Diameter of the anchor	d _{nom}	[mm]	(3	8	3	10)	1	2	1	6	20
Partial safety factor	γмс	[-]		1,5									

Table 8: Displacement under shear load

			M6-1 M6-2	M8-1 M8-2	M10-1 M10-2	M12-1 M12-2	M16-1 M16-2	M20
Shear Load in non-cracked concrete C20/25÷C50/60 [kN		[kN]	3,1	4,4	6,6	9,6	20,3	24,5
δvo		[mm]	2,1	2,0	2,6	2,8	3,0	2,6
Displacement δ _{V∞}		[mm]	3,1	3,1	3,9	4,2	4,4	4,0

FM753 Nautilus hrg

Design method A: characteristic values of resistance to shear loads and displacements

Annex 6

of the European Technical Approval